GRANDES MODELOS DE LENGUAJE

GRANDES MODELOS DE LENGUAJE

CONCEPTOS, TÉCNICAS Y APLICACIONES

ATKINSON-ABUTRIDY, JOHN

23,40 €
IVA incluido
✅ Disponible - Ver Ubicación
Editorial:
MARCOMBO
Año de edición:
2023
Ubicación
A1-3111
ISBN:
978-84-267-3679-6
Páginas:
284
Encuadernación:
Rústica
23,40 €
IVA incluido
✅ Disponible - Ver Ubicación
Recoger
Añadir a favoritos

Índice de figuras ................................................................................................ XIX
Índice de tablas ................................................................................................ XXII
CAPÍTULO 1 ............................................................................................................ 1
1.1. Inteligencia artificial generativa ............................................................ 1
1.1.1. Funcionamiento de la IA generativa ................................................. 3
1.1.2. Focos de la IA generativa .................................................................. 6
1.1.3. Aplicaciones ...................................................................................... 7
1.2. Modelos de lenguaje generativos ......................................................... 8
1.3. Conclusiones ....................................................................................... 14
CAPÍTULO 2 .......................................................................................................... 15
2.1. Introducción ........................................................................................ 15
2.2. Modelos de lenguaje autorregresivos ................................................ 19
2.3. Modelos de lenguaje estadísticos ....................................................... 21
2.4. Modelos de lenguaje neuronales ........................................................ 22
2.4.1. Modelos de lenguaje preentrenados ............................................. 25
2.5. Grandes modelos de lenguaje ............................................................ 26
2.6. Modelos de embeddings de palabras ................................................. 27
2.7. Redes neuronales recurrentes ............................................................ 35
2.7.1. Redes neuronales recurrentes simples .......................................... 35
2.7.2. Redes de memoria a corto-largo plazo ........................................... 40
2.8. Autoencoders ...................................................................................... 44
2.8.1. Cuello de botella de la información ................................................ 46
2.8.2. Variables latentes ........................................................................... 47
2.8.3. Arquitectura de un Autoencoder ................................................... 49
2.8.4. Tipos de Autoencoders ................................................................... 50
2.9. Redes adversarias generativas ............................................................ 56
2.10. Modelos de atención .......................................................................... 59
2.10.1. Problema del encoder-decoder ...................................................... 61
2.10.2. Atención en modelos de secuencia ................................................ 63
2.11. Transformers ....................................................................................... 80
2.11.1. Capa del encoder ............................................................................ 84
2.11.2. Codificación posicional ................................................................... 85
2.11.3. Conexiones residuales .................................................................... 89
2.11.4. Capa del decoder ............................................................................ 90
2.11.5. Capa lineal y SoftMax ..................................................................... 93
2.11.6. Entrenamiento ............................................................................... 94
2.11.7. Inferencia ........................................................................................ 96
2.11.8. Función de pérdida ......................................................................... 98
2.12. Conclusiones ..................................................................................... 100
CAPÍTULO 3 ........................................................................................................ 101
3.1. Introducción ...................................................................................... 101
3.1.1. Habilidades emergentes ............................................................... 102
3.1.2. Técnicas de mejoramiento de capacidades .................................. 104
3.1.3. Corpus comunes ........................................................................... 105
3.1.4. Tipos de entrenamiento ............................................................... 106
3.1.5. Tipos de aprendizaje ..................................................................... 107
3.1.6. Tipos de tokenización ................................................................... 109
3.2. BERT .................................................................................................. 110
3.2.1. Funcionamiento ............................................................................ 112
3.2.2. Arquitectura ................................................................................. 115
3.2.3. Entrada del modelo ...................................................................... 115
3.2.4. Salida del modelo ......................................................................... 116
3.2.5. Modelos preentrenados basados en BERT ................................... 118
3.3. GPT .................................................................................................... 119
3.3.1. El modelo GPT y GPT-2 ................................................................. 121
3.3.2. El modelo GPT-3 ........................................................................... 131
3.3.3. El modelo GPT-4 ........................................................................... 134
3.3.4. Reinforcement Learning from Human Feedback ......................... 135
3.4. PaLM ................................................................................................. 140
3.4.1. Vocabulario .................................................................................. 143
3.4.2. Entrenamiento ............................................................................. 144
3.4.3. PaLM-2 ......................................................................................... 145
3.5. LLaMA ............................................................................................... 148
3.5.1. Datos de preentrenamiento ......................................................... 149
3.5.2. Arquitectura ................................................................................. 150
3.6. LaMDA ............................................................................................... 151
3.6.1. Objetivos y métricas ..................................................................... 153
3.6.2. Preentrenamiento de LaMDA ....................................................... 154
3.7. MEGATRON ....................................................................................... 156
3.7.1. Datos de entrenamiento .............................................................. 159
3.8. Otros LLM .......................................................................................... 160
3.9. Conclusiones ..................................................................................... 162
CAPÍTULO 4 ........................................................................................................ 165
4.1. Introducción ...................................................................................... 165
4.2. Tareas de evaluación ........................................................................ 166
4.2.1. Tareas básicas de evaluación ....................................................... 167
4.2.2. Tareas avanzadas de evaluación .................................................. 171
4.2.3. Tareas de cumplimiento de regulaciones ..................................... 172
4.3. Métricas y puntos de referencia ....................................................... 176
4.4. Datasets de Benchmark .................................................................... 178
4.4.1. SQuAD (Stanford Question Answering Dataset) .......................... 178
4.4.2. GLUE (General Language Understanding Evaluation) .................. 179
4.4.3. SNLI (Stanford Natural Language Inference) ................................ 180
4.4.4. ARC (Abstraction and Reasoning Corpus) ..................................... 180
4.5. Evaluación de LLM ............................................................................ 181
4.6. Conclusiones ..................................................................................... 186
CAPÍTULO 5 ........................................................................................................ 189
5.1. Introducción ...................................................................................... 189
5.2. Clasificación de sentimientos ............................................................ 190
5.3. Búsqueda semántica en textos ......................................................... 197
5.4. Razonamiento con agentes de lenguaje ........................................... 198
5.5. Inferencia causal ............................................................................... 201
5.6. Acceso a bases de datos en lenguaje natural ................................... 203
5.7. Cargando y preguntando por datos propios ..................................... 206
5.8. Realizando ajuste fino de un modelo con datos propios .................. 209
5.9. Diseño y optimización de prompts .................................................... 214
5.10. Sistema conversacional ChatGPT ...................................................... 221
5.11. Sistema conversacional BARD ........................................................... 229
5.12. Conclusiones ..................................................................................... 231
CAPÍTULO 6 ........................................................................................................ 233
6.1. Introducción ...................................................................................... 233
6.2. Habilidades emergentes ................................................................... 234
6.3. LLM en producción ........................................................................... 236
6.4. Alineación entre humanos y LLM ...................................................... 238
6.5. Ética .................................................................................................. 240
6.6. Aspectos regulatorios ....................................................................... 242
6.7. Complejidad ...................................................................................... 243
6.8. Riesgos .............................................................................................. 244
6.9. Limitaciones ...................................................................................... 245
6.10. Conclusiones ..................................................................................... 247
Índice onomástico ............................................................................................ 249
Bibliografía ....................................................................................................... 253

¡Prepárese para sumergirse en el mundo fascinante y vanguardista de la inteligencia artificial! En este libro descubrirá el nexo en común que impulsa algunas de las aplicaciones recientes más revolucionarias de la inteligencia artificial (IA): desde sistemas conversacionales como ChatGPT o BARD, hasta la traducción automática, generación de resúmenes, respuesta a preguntas y mucho más. En el centro de estas innovadoras aplicaciones, se encuentra una disciplina poderosa y en creciente evolución, el procesamiento del lenguaje natural (PLN o NLP, por sus siglas en inglés). Durante más de 60 años, la investigación de esta ciencia ha estado enfocada en permitir que las máquinas comprendan y generen lenguaje humano de manera eficiente. Los secretos detrás de estos avances tecnológicos residen en los grandes modelos de lenguaje (LLM), cuyo poder radica en su capacidad de capturar patrones complejos y aprender representaciones contextuales del lenguaje. Imagine cómo estos modelos pueden poner atención en los detalles más relevantes de un texto, aprendiendo automáticamente relaciones complejas para brindar respuestas y resultados más precisos. ¿Cómo funcionan estos LLM? ¿Cuáles son los modelos disponibles y cómo se evalúan? Este libro le ayudará a responder estas y muchas otras preguntas. Con una introducción técnica pero accesible: ' Explorará el fascinante mundo de los LLM, desde sus fundamentos hasta las aplicaciones más poderosas. ' Aprenderá a construir sus propias aplicaciones simples con algunos de los LLM. Grandes modelos de lenguaje está diseñado para guiarle paso a paso en este emocionante viaje. Con 6 capítulos que combinan teoría y práctica, junto con ejercicios en Python en la plataforma Colab, dominará los secretos de los LLM y su aplicación en el procesamiento del lenguaje natural. Desde las redes neuronales profundas y los mecanismos de atención, hasta los LLM más relevantes tales como BERT, GPT-4, LLaMA, Palm-2 y Falcon, será testigo de los logros más importantes en NLP. No solo conocerá los benchmarks utilizados para evaluar las capacidades de estos modelos, sino que también adquirirá la habilidad para crear sus propias aplicaciones de NLP. No espere más para iniciar esta lectura. Gracias a ella entenderá los paradigmas, los métodos computacionales y los modelos para desarrollar aplicaciones que procesarán o generarán lenguaje natural para diferentes propósitos y nichos de aplicación.

Artículos relacionados

  • ALIMENTAR LA MÁQUINA
    CANT, CALLUM / MULDOON, JAMES / GRAHAM, MARK
    1. **Impacto social de la inteligencia artificial** Descubre cómo la inteligencia artificial ha generado un impacto social profundo al exponer la realidad de los trabajadores explotados que la sostienen.2. **Consecuencias éticas de la tecnología moderna** Adéntrate en las consecuencias éticas y morales que subyacen a la industria tecnológica, revelando la explotación hu...
    ✅ Disponible - Ver Ubicación

    22,00 €

  • LA INTELIGENCIA ARTIFICIAL EXPLICADA A TODOS LOS PÚBLICOS
    BELTRAN, DENISSE/FERNANDEZ ÁLVAREZ, LOR / FERNÁNDEZ ÁLVAREZ, LORENA / GARAIZAR SAGARMÍNAGA, PABLO / BELTRÁN, DENISSE (Ilustración)
    1. **Tecnología Emergente en Inteligencia Artificial** Descubre cómo la inteligencia artificial está transformando nuestro mundo, desmitificando conceptos y ofreciendo claridad sobre su funcionamiento.2. **Impacto de la IA en la Sociedad Actual** Explora cómo la inteligencia artificial está moldeando el presente y el futuro, influenciando diversos aspectos de nuestra vi...
    ✅ Disponible - Ver Ubicación

    21,00 €

  • 100 COSAS QUE HAY QUE SABER SOBRE INTELIGENCIA ARTIFICIAL
    LOPEZ DE MANTARAS BADIA, RAMON
    El autor trata diferentes temas relacionados con la inteligencia artificial: desde sus inicios, hasta los descubrimientos más recientes, destacando sus limitaciones técnicas y éticas, y su impacto social. Sabemos que la IA ya está impactando en nuestra vida pero aún desconocemos hasta qué punto nos la puede cambiar. La gran cantidad de datos que es capaz de recoger y analizar l...
    ✅ Disponible - Ver Ubicación

    16,40 €

  • CHATGPT TU ASISTENTE VIRTUAL PARA TRIUNFAR EN LA ERA DIGITAL
    TORMO NAVARRO, MARISA / TORMO NAVARRO,MARISA
    ¿Eres estudiante buscando el camino para destacar en tus estudios? ¿Un administrativo tratando de optimizar tu tiempo, empezando por simplificar tareas tediosas? ¿O quizás un ejecutivo con sed de liderazgo en el mundo digital, deseando mejorar tus estrategias de marketing?No importa quién seas ni en qué campo te desenvuelvas, este libro es para ti. Te enseñaré a utilizar ChatGP...
    ✅ Disponible - Ver Ubicación

    17,90 €

  • LOS ERRORES DEL SOFTWARE Y CÓMO PREVENIRLOS
    PEÑA MARÍ, RICARDO / PEÑA MARI,RICARDO
    Los computadores permean y controlan todas las facetas de la vida de las sociedades modernas, desde nuestro horno de microondas o nuestro automóvil, hasta los grandes sistemas informáticos de empresas como Amazon o Google. Su capacidad para resolver problemas se la da el software, es decir, el conjunto de programas que contienen sus memorias. Y el software, por desgracia, conti...
    ✅ Disponible - Ver Ubicación

    12,00 €

  • INTRODUCCIÓN A LA INFORMATICA. EDICIÓN 2024
    MARTOS RUBIO, ANA
    Sin duda, usted se ha dado cuenta de que la informática y el ocio digital ya forman parte de nuestra vida diaria. Se encuentra con ellos en el banco, en la cultura, en los viajes, etc., y le llaman la atención. Todos a su alrededor los emplean, ¿por qué usted no?Si se encuentra en esa edad en la que después de haber disfrutado de muchas cosas no quiere perderse nada del mundo a...
    ✅ Disponible - Ver Ubicación

    16,50 €